The Drosophila miR-310 Cluster Negatively Regulates Synaptic Strength at the Neuromuscular Junction
نویسندگان
چکیده
Emerging data implicate microRNAs (miRNAs) in the regulation of synaptic structure and function, but we know little about their role in the regulation of neurotransmission in presynaptic neurons. Here, we demonstrate that the miR-310-313 cluster is required for normal synaptic transmission at the Drosophila larval neuromuscular junction. Loss of miR-310-313 cluster leads to a significant enhancement of neurotransmitter release, which can be rescued with temporally restricted expression of mir-310-313 in larval presynaptic neurons. Kinesin family member, Khc-73 is a functional target for miR-310-313 as its expression is increased in mir-310-313 mutants and reducing it restores normal synaptic function. Cluster mutants show an increase in the active zone protein Bruchpilot accompanied by an increase in electron dense T bars. Finally, we show that repression of Khc-73 by miR-310-313 cluster influences the establishment of normal synaptic homeostasis. Our findings establish a role for miRNAs in the regulation of neurotransmitter release.
منابع مشابه
Kismet Positively Regulates Glutamate Receptor Localization and Synaptic Transmission at the Drosophila Neuromuscular Junction
The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), ...
متن کاملLRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are linked to familial as well as sporadic forms of Parkinson's disease (PD), a neurodegenerative disease characterized by dysfunction and degeneration of dopaminergic and other types of neurons. The molecular and cellular mechanisms underlying LRRK2 action remain poorly defined. Here, we show that LRRK2 controls synaptic morphogenesis at the Dr...
متن کاملGlial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction.
Glial cells are emerging as important regulators of synapse formation, maturation, and plasticity through the release of secreted signaling molecules. Here we use chromatin immunoprecipitation along with Drosophila genomic tiling arrays to define potential targets of the glial transcription factor Reversed polarity (Repo). Unexpectedly, we identified wingless (wg), a secreted morphogen that reg...
متن کاملPAR-1 Kinase Phosphorylates Dlg and Regulates Its Postsynaptic Targeting at the Drosophila Neuromuscular Junction
Targeting of synaptic molecules to their proper location is essential for synaptic differentiation and plasticity. PSD-95/Dlg proteins have been established as key components of the postsynapse. However, the molecular mechanisms regulating the synaptic targeting, assembly, and disassembly of PSD-95/Dlg are not well understood. Here we show that PAR-1 kinase, a conserved cell polarity regulator,...
متن کاملGlutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction.
At the Drosophila glutamatergic neuromuscular junction, the postsynaptic cell can regulate synaptic strength by both changing its sensitivity to neurotransmitter and generating a retrograde signal that regulates presynaptic transmitter release. To investigate the molecular mechanisms underlying these forms of plasticity, we have undertaken a genetic analysis of two postsynaptic glutamate recept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 68 شماره
صفحات -
تاریخ انتشار 2010